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LETTER TO THE EDITOR 

Domain growth in the dilute random-field Ising model and the 
breakdown of self-similar dynamical scaling 

Debashish Chowdhury and J D Gunton 
Department of Physics, Temple University, Philadelphia, PA 19122, USA 

Received 8 September 1986 

Abstract. Using Monte Carlo simulation, we have studied the kinetics of the domain growth 
in the dilute random-field Ising model with Glauber dynamics in two dimensions, following 
a quench from a very high temperature to a low-temperature unstable state. Our data 
strongly suggest a breakdown of self-similar dynamical scaling. 

During the last decade considerable attention has been paid to various generalisations 
of the Ising model. For example, the random-field Ising model (RFIM)  is defined by 
the Hamiltonian (see Imry (1984) and Villain (1985) for reviews) 

zip= -J  c sis,+c H i s i  
(ij) I 

where the Ising spins Si, S,, etc, at the lattice sites r i ,  r,, etc, interact via the nearest- 
neighbour ( N N )  exchange interaction J. In addition, a random external magnetic field 
Hi acts on each spin S i .  Both the discrete distribution 

P( Hi) = 0.5 S ( Hi - H) + 0.5 6 (Hi + H )  

P ( H , )  = {1/[(27r)”*~]} e x p ( - ~ f / 2 ~ ’ )  

(2) 
and the continuous distribution 

have been considered in the literature. 
Another interesting generalisation of the Ising model, the dilute Ising model ( D I M ) ,  

is defined by the Hamiltonian (see Stinchcombe (1983) for a review; see also Chowdhury 
and Stauffer (1986a, b)) 

(3) 

where c i ,  cj ,  etc, are the probabilities that the sites ri, ‘j are occupied by the Ising spins. 
We define 

Cl = 1 (4a) 

Cl = 0 otherwise (46) 

% = - J . . C . C . S . S .  
V t l  I 

(U) 

if the lattice site ri is occupied 
and 

so that p is the average concentration of the spins in the system. 

Ising model ( DRFIM) ,  whose Hamiltonian is 
In this letter we shall investigate the domain growth law in the dilute random-field 

x=-J cicjsisj+c H i s i  
(U) 

where the symbols have the same meanings as stated above. 
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We have studied the growth of ferromagnetic domains in the two-dimensional 
DRFIM following a rapid quench from a very high temperature to a temperature Tf. 
Although it is now generally believed that, in two dimensions, there is no transition 
from the paramagnetic to the ferromagnetic phase in the RFIM at any non-zero 
temperature, very large domains can grow at sufficiently low temperatures, as shown 
earlier by Gawlinski et al (1984, 1985). Some typical configurations at successively 
longer time scales following a quench are shown in figure 1. Since the system is 
non-self-averaging (Milchev et a1 1986), we have averaged over a large number of 
configurations (quenches) Nq in spite of the fact that our system sizes were quite large 
(300’). The large size of the lattice was used to ensure the absence of any significant 
finite-size effect. The average size of the domains R, has been determined from the 
non-equilibrium magnetisation per spin (the details of the computational method will 
be reported elsewhere (Chowdhury et al 1986a)), i.e. 

Figure 1. Typical configurations of a 602 sample of 
the DRFIM for p = 0.98, H = 0.10 after (a)  5 MCS, 
( b )  25 MCS and (c) 100 MCS following a quench 
from a very high-temperature equilibrium state to 
T,= 0.10 T,( p = 1, H = 0). The open circles denote 
the impurities, the stars denote the up spins and the 
white background denotes the down spins. 
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as proposed by Sadiq and Binder (1984). The size of the domains is plotted as a 
function of time t for various values of the random-field strength in figure 2. These 
curves are qualitatively similar to those in the case of the RFIM (Gawlinski et al 1984, 
Chowdhury and Stauffer 1985). The most crucial observation is that the growth of the 
domains is not only much slower than that in the pure Ising model in the absence of 
random field (Gawlinski et a1 1984), but also slower than that observed in the dilute 
Ising (Chowdhury et a1 1986b) and random-field Ising models (Gawlinski et a1 1984, 
Chowdhury and Stauffer 1985). The so-called Allen-Cahn law (Allen and Cahn 1979, 
Kawasaki et a1 1978), which describes the curvature-driven domain growth, states that 
R k a  t. Clearly, this law breaks down in the DRFIM as should be expected. Also note 
that, although the growth in the DRFIM can be described by Rkcct" ,  the effective n 
would decrease with the increasing strength of the random field. 

In two dimensions the relation between the 'domain size' R ,  and the structure 
factor S ( k ,  t )  is R k  = S(0, t ) ,  where k is the wavenumber and t denotes time. It is 
well known (see Gunton and Droz (1983) and Gunton et al (1983) for reviews) that 
for the pure Ising model in the absence of a random field, evolving from unstable 
states, the structure factor S(  k, t )  follows the dynamical scaling form 

S ( k ,  t ) =  R d f ( k R ( t ) )  (7) 
in d dimensions where f ( x )  is the scaling function. The characteristic length scale 
R ( t )  in (7) is, of course, time dependent. We have not explicitly studied the scaling 
function for the DRFIM. However, one can fit these data with a power law of the form 
R ( t )  - t" with the effective exponent n varying with the parameters H and p .  Thus 
the usual self-similar dynamical scaling seems to be violated here. Although the 
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Figure 2. The characteristic size R ;  of the ferromagnetic domains in the two-dimensional 
D R F I M  as a function of time (Monte Carlo step per spin). In this figure p denotes the 
concentration of the king spins, H is the strength of the random fields (defined through 
equation (2))  and Nq is the number of quenches over which the corresponding data have 
been averaged. For H = 0.05 comparison of the data for p = 0.995, 0.99 and 0.975 shows 
R ;  to decrease drastically with decreasing p ,  at least for sufficiently long times. For 
p = 0.995, increasing H reduces R ; .  0, p = 1.0, H = 0.5, Nq = 50; U, p =0.995, H = 0.5, 
Nq=50;  U, p=O.995, H=0.4 ,  NQ=75: 0, p=0.990, H=0.3 ,  Nq=50;  e, p=O.975, 
H = 0.05, N ,  = 50. 
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equilibrium properties of the DRFIM are not known, there is little doubt that there is 
no long-range order at finite temperatures, as in the two-dimensional RFIM. As a 
consequence, we can envision the following scenario (Grant and Gunton 1984). 
Domains will grow until they reach some finite average size I?,, which stops the process 
of ordering. Thus, there is a range of length scales, R > R,, which are inaccessible for 
scaling. Therefore, the system will no longer be dynamically self-similar. This has 
been shown explicitly for the RFIM. It would be of interest to confirm this for the 
DRFIM in a future Monte Carlo study. 

In summary, both the dilution and the random field slow down the growth of the 
domains in the DRFIM.  Our Monte Carlo data strongly suggest the breakdown of the 
self-similar dynamical scaling. 

This work is supported by a grant from NSF through Grant No DMR-8312958. We 
would like to thank E T Gawlinski, M Grant, S Kumar and D Stauffer for useful 
discussions. 
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